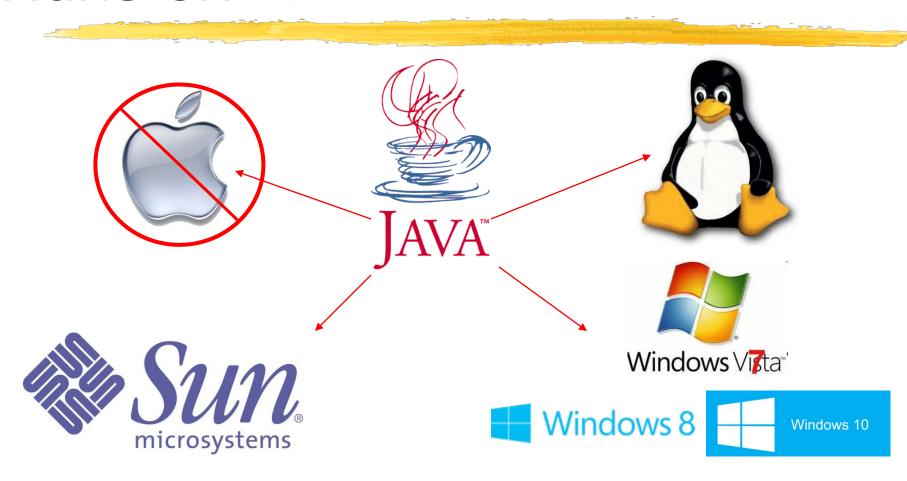
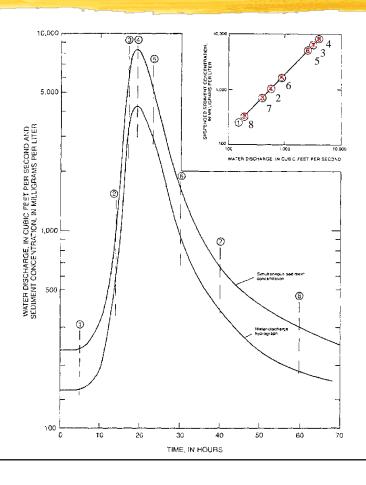

<u>Graphical Constituent Loading Analysis</u> <u>System (GCLAS)</u>


- Initial release in 2001
- GCLAS can compute discharges/loads and timeweighted mean concentrations of water-quality constituents at about any time scale (typically daily)
- Requires concentration data at a high enough frequency to reasonably define the chemograph

Runs on ...



Why use GCLAS?

- Provides a uniform set of tools for constituent loading computations
- Speeds record computation/recomputation
- Enhances ability to perform certain exploratory analyses (e.g. assessment of cross-section coefficients)
- Enhances ability to archive and restore data for later analyses and(or) review
- Not dependent on statistical assumptions or having a good surrogate for the constituent of interest

Is flow a good surrogate for concentration?

Is flow a good surrogate for concentration?

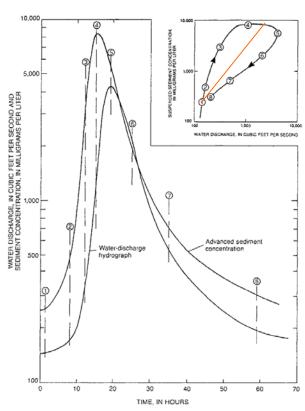


Figure 5.--Sediment concentration peak preceding the water discharge peak.

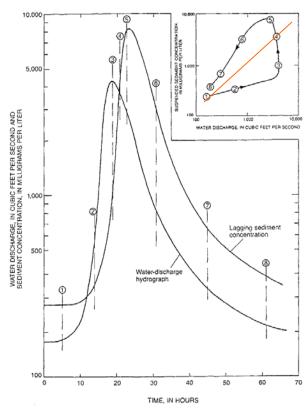
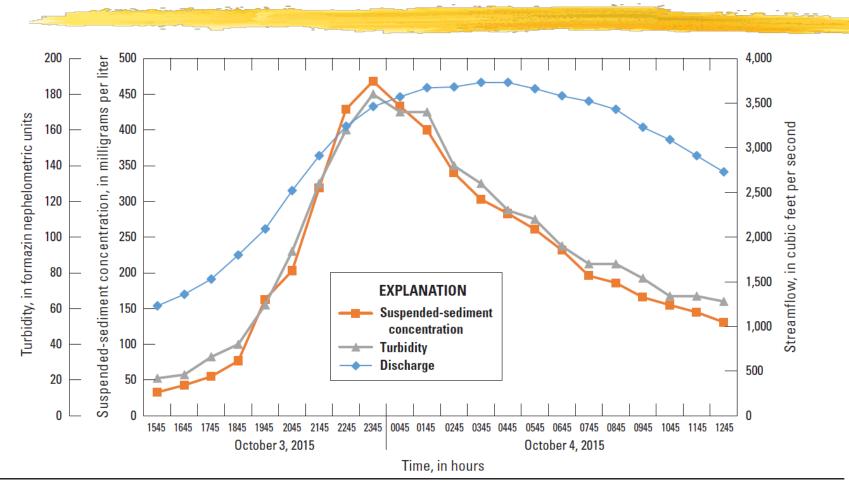
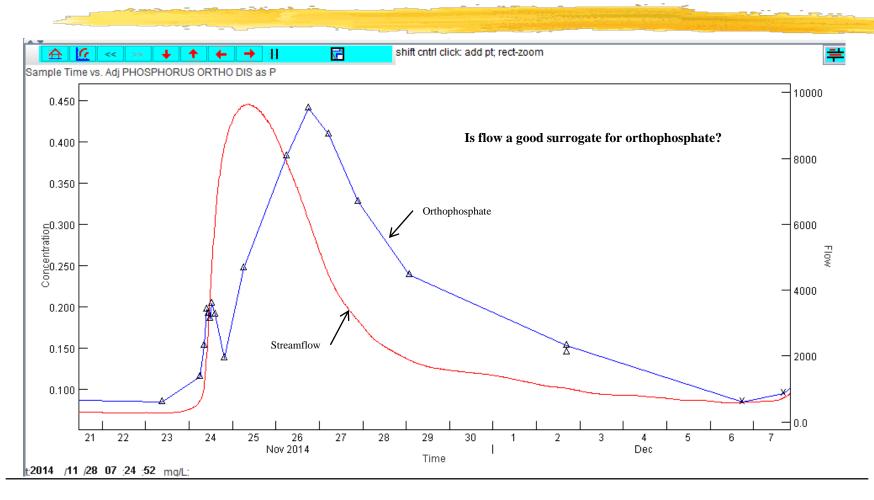
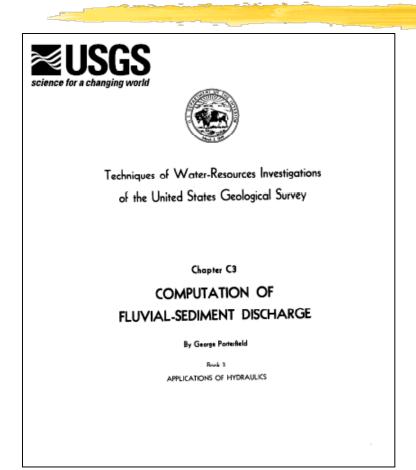
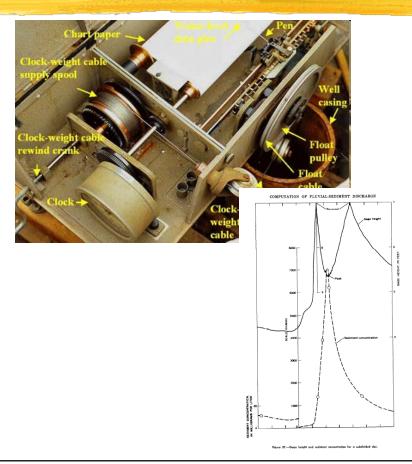



Figure 6.--Sediment concentration peak lagging the water discharge peak.



Sometimes surrogates other than flow work well




Sometimes there are no good surrogates

Computations based on methods described by Porterfield

Midinterval Method

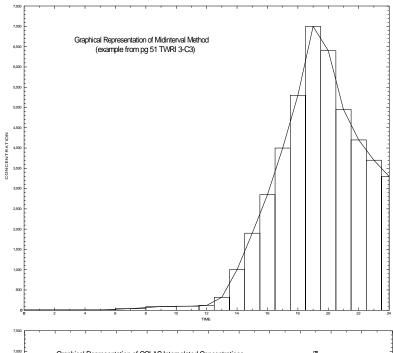
Table 4.—Computation of subdivided day, midinterval method

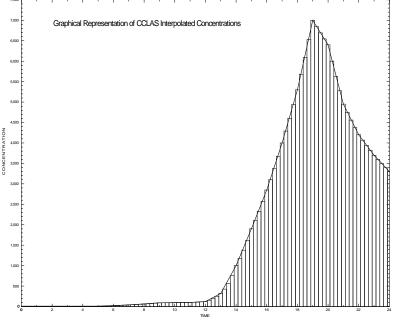
Clock time (col. 1): The actual time, given in 24-hour time, for which values are tabulated. Sufficient values must be chosen to assure that the maximum change in successive values of water discharge and sediment concentration is within the limits apecified by the allowable range in stage and by the guide to subdivision (fig. 36).

Time interval (col. 2): The sum of one-half the time back to the preceding clock time and one-half the time to the following clock time. The first interval, of 2.5 hours, is one-half the time from midnight (0000 hrs) and 5 a.m. (0500 hrs). The second interval, of 3.5 hours, is one-half the time from midnight to 5 a.m. (2.5 hrs) plus one-half the time from a a.m. to 7 a.m. (1 hr). This may also be computed by taking one-half the difference of alternate hours (except the first and last)

as follows

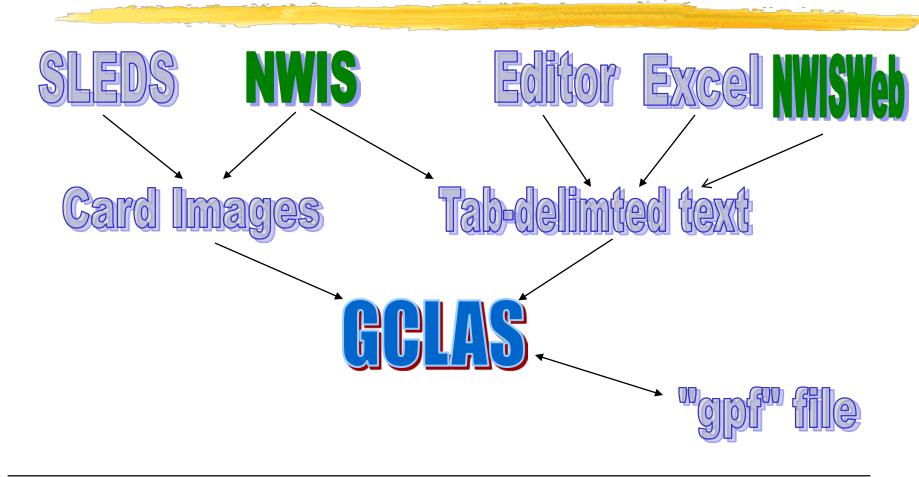
First interval: $\frac{0500-0000}{2} = 2$

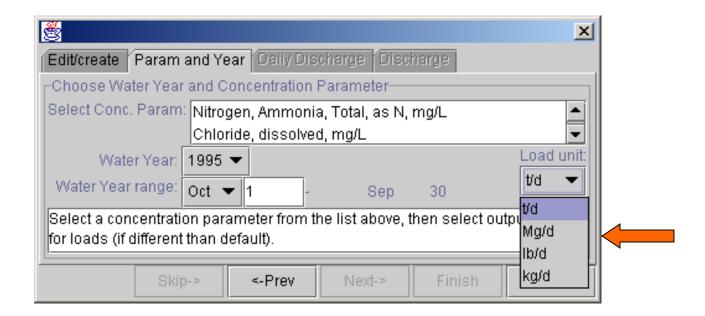

Second interval: $\frac{0700-0000}{2}$ = Third interval: $\frac{0900-0500}{2}$ =


Cols. 3-6: See explanation for columns 2-5, table 3.

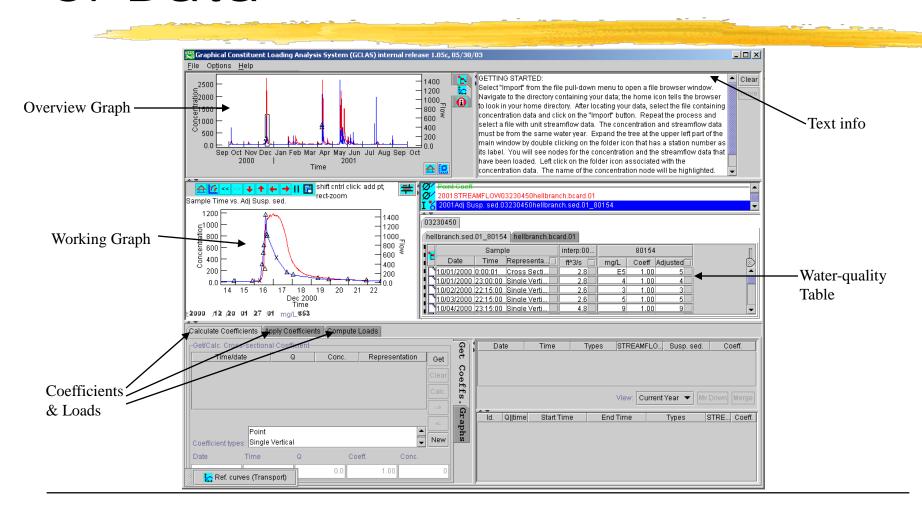
Interval × concentration (col. 7): See explanation for column

	Clock time (hrs) (1)	Time interval, t (hrs) (2)	Gage height (ft) (3)	Shift correction (ft) (4)	Water discharge, q (cfs) (b)	Sediment concentration, (mg/l) (6)	Interval × concentration, tc (col. 2 × col. 6
	0000	2.5	4.17	0	174	8 8	20
	0500	3.5	4.19	0	182	8	28
	0700	2.0	4.32	Ō	234	40	80
	0900	2.0	4.60	Ö	370	90	180
	1100	1.5	4.67	Ŏ	408	100	150
	1200	1.0	4.73	Ō	442	120	120
	1300	1.0	5.22	Ō	744	320	320
	1400	1.0	6.22	Õ	1,740	1.000	1,000
	1500	1.0	7.20	ō	3,120	1,900	1,900
	1600	1.0	7.83	Ŏ	4,220	2,850	2,850
	1700	1.0	8.26	ŏ	5,090	4,000	4,000
	1800	1.0	8.50	ň	5,620	5,300	5,300
	1900	1.0	8.56	ŏ	5,750	7,000	7,000
	2000	1.0	8.60	Ŏ	5,840	6,400	6,400
	2100	1.0	8.54	ŏ	5,710	4,950	4,950
	2200	1.0	8.41	Ŏ	5,420	4,200	4,200
	2300	1.0	8.31	ŏ	5,200	3,700	3,700
	2400	.5	8.10	ŏ	4,760	3,300	1,650
Total		24	144.365		54,168		43,848
Weighted mean			6.02	_	2,260		1,830


- In GCLAS, concentrations interpolated to times of unit streamflow values
- Computations done at same time step as streamflow

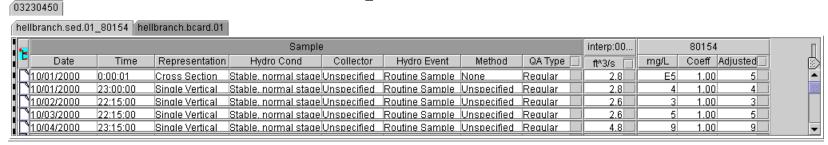

EELS Features

Multiple Input Formats



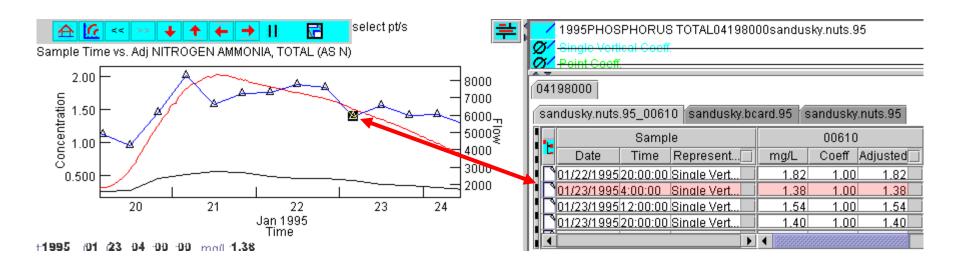
Flexible Input/Output Units

Multiple Concurrent Views of Data

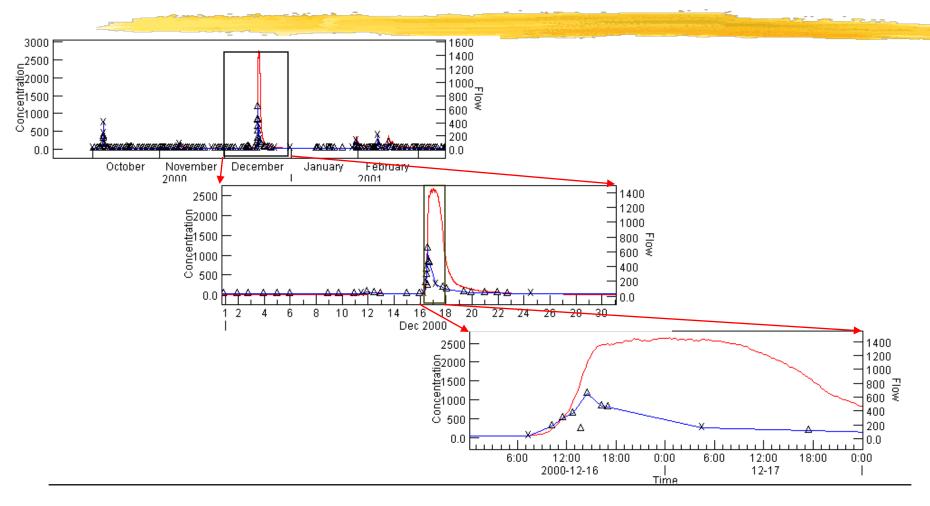


Metadata (if needed)

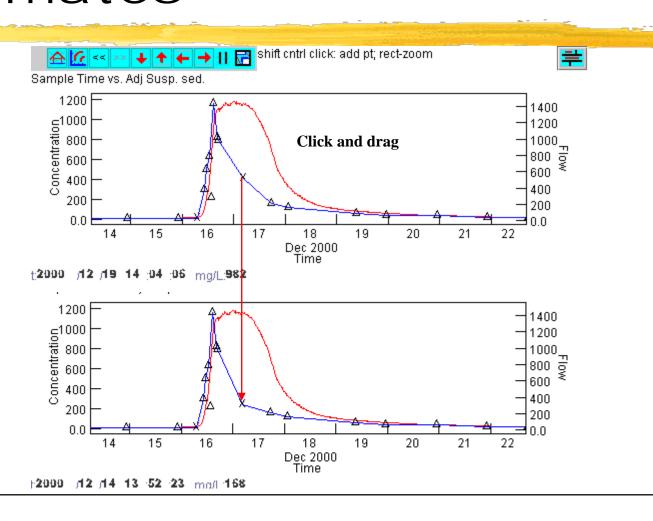
Normal View


03	3230450							
h	ellbranch.sed.0	1_80154 h	ellbranch.bcard.01					
1	_	Samp	le	interp:00		П		
	Date	Time	Representation	ft^3/s	mg/L	Coeff	Adjusted	
	10/01/2000	0:00:01	Cross Section	2.8	E5	1.00	5	
	10/01/2000	23:00:00	Single Vertical	2.8	4	1.00	4	200
	10/02/2000	22:15:00	Single Vertical	2.6	3	1.00	3	
	10/03/2000	22:15:00	Single Vertical	2.6	5	1.00	5	
	10/04/2000	23:15:00	Single Vertical	4.8	9	1.00	9	_

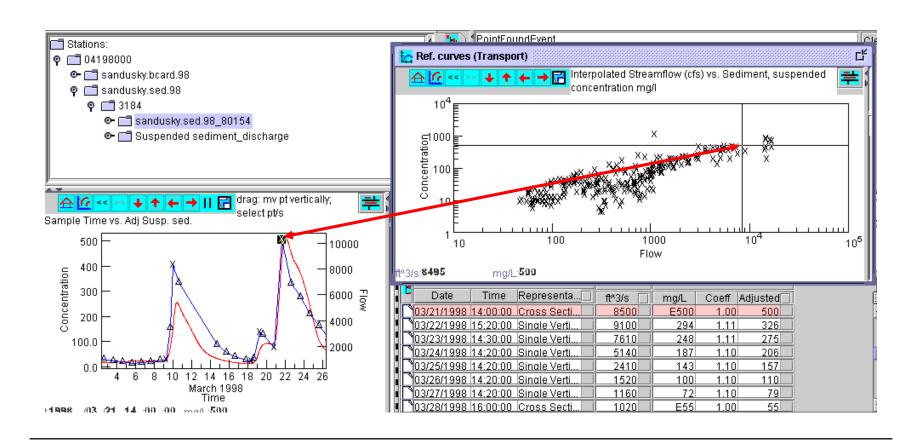
Expanded View



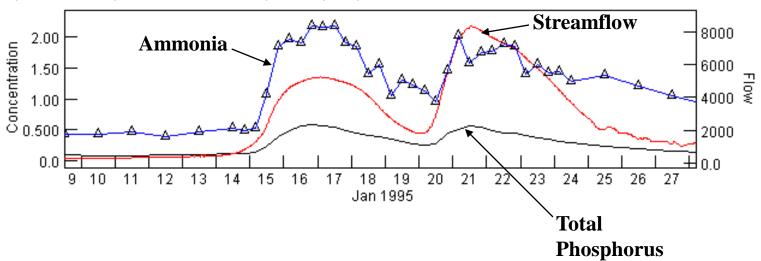
Dynamically Linked Views

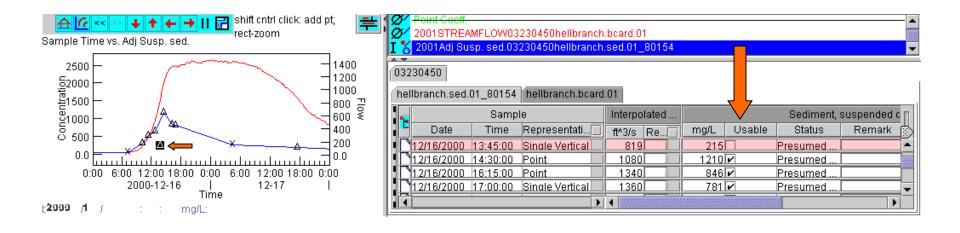


Drill Down for Detail



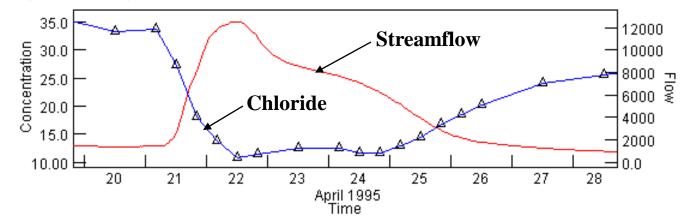
Graphically Add/Edit Estimates


Linked Transport Plot to Aid Estimation


Reference Curves

Sample Time vs. Adj NITROGEN AMMONIA, TOTAL (AS N)

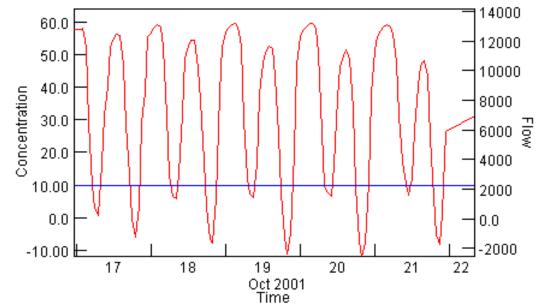
"Usable" Values



Used to ignore erroneous values and individual values used to compute averages

Compute Loads of Any Constituent

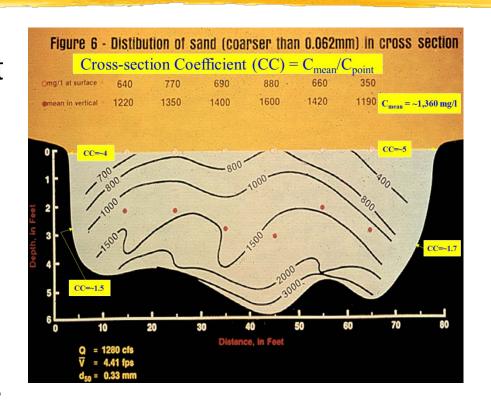
Sample Time vs. Adj CHLORIDE DISSOLVED



t:1995 /04 /23 19 :25 :42 mg/L:10.7

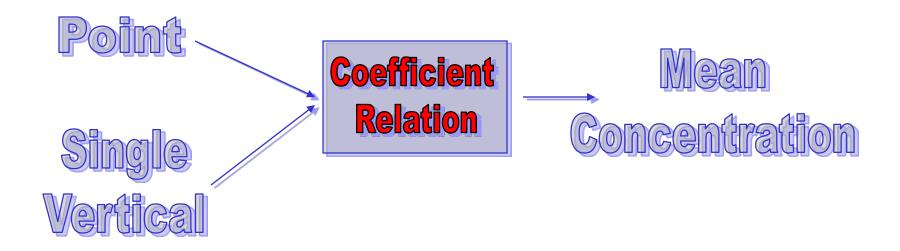
Can Calculate Loads for Periods of Zero and Reverse Flow

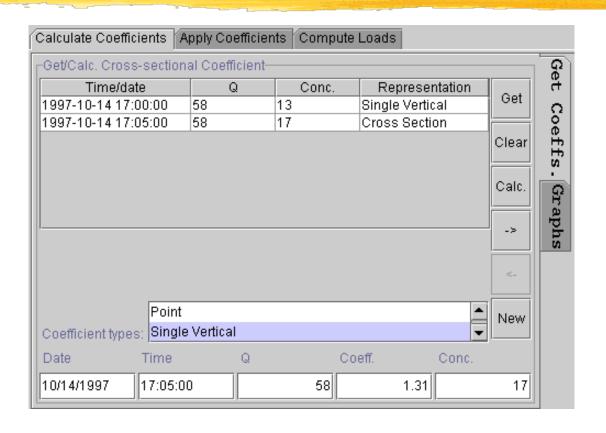
Bample Time vs. Adj Susp. sed.



:2001 /10 /20 00 :40 :23 mg/L:18.2

Cross-section coefficients


- Used to adjust concentrations from point or single-vertical (SV) samples to be more representative of crosssection mean
- Based on comparisons between concurrent point/SV concentrations and depth & width integrated concentrations (e.g. EDI/EWI)


Cross-section Coefficients

Concentration at:

Coefficient Calculation Tool

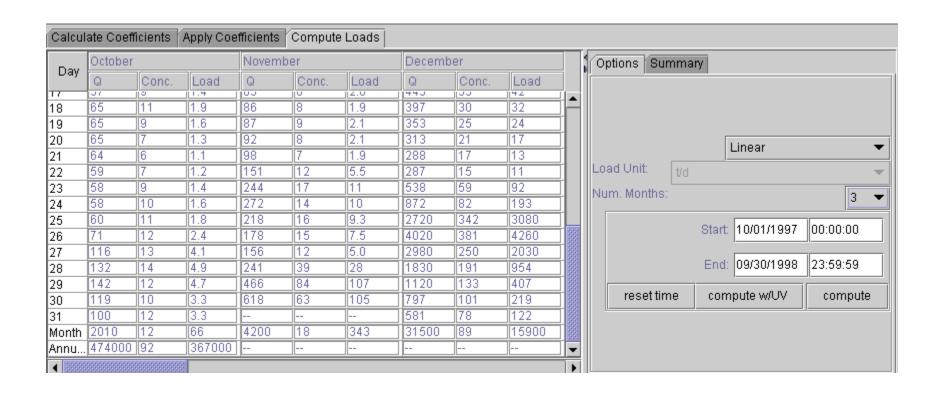
Visualization of Coefficient Trends

Calculate Coefficients | Apply Coefficients | Compute Loads **☆ (**< >> **↓ ↑ ← → (** Coeff. Quen cod rect-zoom 2.00 Coeff. vs Time 1.50 1.00 0.500 Graphs 0.0 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct 1997 1998 Time 1997 jil j27 11 j32 j47 coeff1.37 A 6 << Quen cod rect-zoom 1.20 1.10 1.00 0.900 Coeff. vs Flow 0.800 500 1000 1500 2000 2500 3000 coeff:1.28 Flow ft^3/s:**2161**

Cross-section Coefficients

Can be applied as:

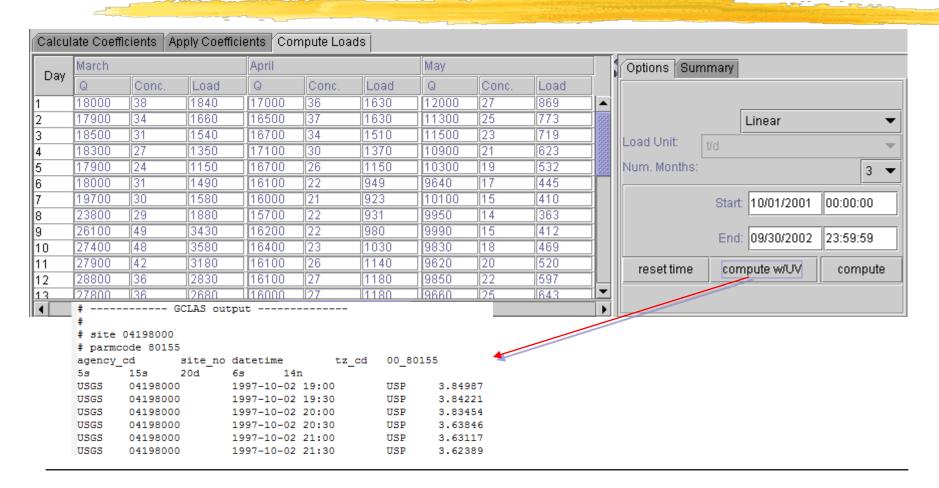
- Constant
- Vary as a function of time
- Vary as a function of streamflow
- Vary as a function of time and streamflow



Visualization of Coefficient Time Series

Sample Time vs. Adj Susp. sed. 14000 800 Coefficient time series 12000 .20 600 Concentration 10000 1.00 Coefficient 0.800 fficient 8000 ⊞ 8000 ₩ 400 6000 4000 200 0.400 2000 0.200 -10.015 20 March April Time t1998 /04 /10 15 /32 /20 mg/L:226

Compute Loads for Any Period Less Than or Equal to a Water Year



Create Daily-Value Outputs

Calcul	ate Coe	fficients	Apply Coe	fficients	Comp	ute Loads									
Day	Octobe	r		Novem	ber	December									
Day	Q	Conc.	Load	Q	Cond	c. Load	Q	Conc.	Load						
17	UT.			00	JO.	2.0	440	100	42						
1 1 R	eports		dExports	Ing	•	Daily Loads	(rounded)	30	32	П					
20	65	Prir	nt Daily Loa	ad Repo	rt	Daily Loads	(unRound	led)							
21	64	р	1.1	98		Daily Mean	Concentra	tion (rou	lhohn						
22	59	7	1.2	151	11										
23	58	9	1.4	244	11	Daily Mean	Concentra	tion (unF	Rounded)						
24	58	10	1.6	272	14	10	872	82	193						
25	60	11	1.8	218	16	9.3	2720	342	3080						
26	71	12	2.4	178	15	7.5	4020	381	4260	333					
27	116	13	4.1	156	12	5.0	2980	250	2030						
28	132	14	4.9	241	39	28	1830	191	954						
29	142	12	4.7	466	84	107	1120	133	407				***		
30	119	10	3.3	618	63	105	797	101	219		#		GCLAS ou	tput	
31	100	12	3.3				581	78	122		#				
Month	2010	12	66	4200	18	343	31500	89	15900			04198000			
Annu	474000	92	367000							-	-	ode 8015			
4 88888			8							ī	agency_		_	datetime	(
1 11111											5s USGS	15s 0419800	20d	14n 1997-10-03	0
											USGS	0419800		1997-10-03	(
											USGS	0419800		1997-10-04	2
											USGS	0419800		1997-10-06	2
											USGS	0419800		1997-10-07	2
											USGS	0419800		1997-10-08	

Create Unit-Value Outputs

Create Printable Loading Report

										A HAVE BEEN			V-8121.05		
Calcul	ate Coeff	icients	Apply Coe	fficients	Compute	Loads				MEAN	CONCEN-		MEAN	CONCEN-	
Day October Nove			Novemi	ber Decen			er	DAY	DISCHARGE (ft^3/s)	TRATION (mg/L)	LOAD (tons)	DISCHARGE (ft^3/s)	TRATION (mg/L)	LOAD (tons	
Day	Q	Conc.	Load	Q	Conc.	Load	Q	Conc.							
17	UT.	O .	1.4	UU	0	2.0	940	100			October			November	
18		141	1 0	88		1.9	397	30							
19 F	Reports I	car	rdExports		- -	2.1	353	25	1 2	15			95 91	13 14	3.3 3.3
20	65	Pri	nt Daily Lo	ad Renn	rt	2.1	313	21	3	64	23	4.1	84	21	4.8
21	64	6		Tan Tan		1.9	288	17	4	64	21	3.6	79	19	4.0
	59	17	1.2	151	12	5.5	287	15	5 6	59 55	18 16	2.9 2.4	73 72	18 14	3.4 2.8
22		1/-							7	53	14	2.4	71	11	2.0
23	58	9	1.4	244	17	11	538	59	8	52	12	1.7	68	12	2.1
24	58	10	1.6	272	14	10	872	82	9	50	11	1.5	68	15	2.7
25	60	11	1.8	218	16	9.3	2720	342	10	52	10	1.5	70	17	3.2
26	71	12	2.4	178	15	7.5	4020	381	11 12	51	10	1.4 1.2	68 67	15 11	2.7
									13	47 49	10 12	1.6	66	10	1.7
27	116	13	4.1	156	12	5.0	2980	250	14	56	15	2.3	71	9	1.8
28	132	14	4.9	241	39	28	1830	191	15	60	15	2.4	82	9	2.0
29	142	12	4.7	466	84	107	1120	133	16	53	12	1.7	85	9	2.0
30	119	10	3.3	618	63	105	797	101	17	57	9	1.4	85	8	2.0
				010		100			18 19	65 65	11 9	1.9 1.6	86 87	8 9	1.9 2.1
31	100	12	3.3				581	78	20	65	7	1.3	92	8	2.1
Month	2010	12	66	4200	18	343	31500	89	21	64	6	1.1	98	7	1.9
Annu	474000	92	367000]	22	59	7	1.2	151	12	5.5
_			Of						23	58	9	1.4	244	17	11
1 20000		000000000000	8						24 25	58 60	10 11	1.6 1.8	272 218	14 16	10 9.3
									26	71	12	2.4	218 178	15	7.5
									27	116	13	4.1	156	12	5.0
									28	132	14	4.9	241	39	28
									29	142	12	4.7	466	84	107
									30	119	10	3.3	618	63	105
									31	100	12	3.3			
									MONTH	2010	12	66	4200	18	343

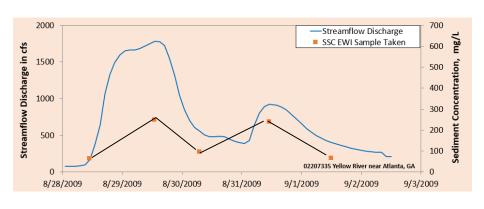
GCLAS Pros and Cons

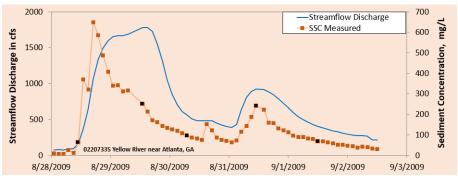
Pros

- Loads can be computed for nearly any time interval ≤ water year
- Cross-section coefficients can be evaluated & applied
- More flexible than regression methods
- No need to transform variables no transformation bias
- Not dependent on statistical assumptions or having a good surrogate for the constituent of interest
- Can be used with reference or surrogate data sets to improve estimates
- GCLAS runs within several operating systems

Cons

- Requires high-frequency concentration data
- Cannot provide confidence limits on estimates
- Not scriptable (not suitable for real-time applications)
- Censored concentrations are assumed equal to censoring level
- Depending on nature of inputs, results can have low to high uncertainty




Censored concentrations are assumed equal to censoring level

- GCLAS treats censored data as being equal to the censoring level (i.e. it ignores the < and > symbols)
- For "less than" values, that results in computing an upper limit of daily mean concentration and loading
- GCLAS typically is not a good choice if there are appreciable censored data

Depending on nature of inputs, results can have low to high uncertainty

For more information ...

- GCLAS available at:
 - http://water.usgs.gov/software/GCLAS/
- Contact Greg Koltun (<u>gfkoltun@usgs.gov</u>) for more information

