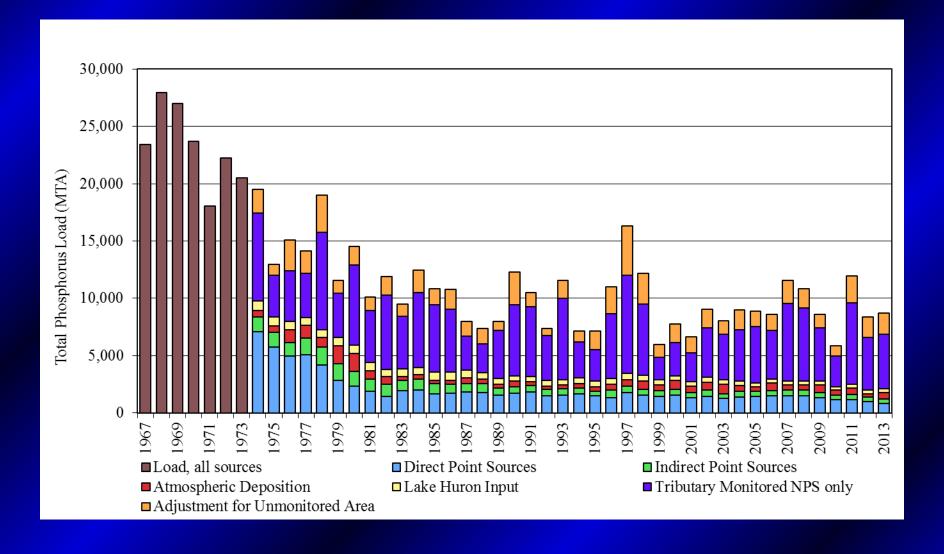

Lake Erie Nutrient Loading Estimation: "The Dolan Approach"

Matthew J. Maccoux


Loading Calculations Technical Symposium NOAA-GLERL, Ann Arbor, MI April 6, 2017

History

- Load estimates began in 1967 for Lake Erie
- IJC began reporting estimates for all lakes in the 1970s
- Same data sources are used today
- Same methods are used today (IJC method)
 - 1978 PLUARG study improved methods for estimating unmonitored areas beginning in 1980-current
 - Provides a consistent long-term dataset for comparison with target loads

Lake Erie Total Phosphorus Loading, 1967-2013

Load Breakdown

- Loads are typically reported annually by subbasin
 - Direct Point Sources, Municipal/Industrial
 - Indirect Point Sources, Municipal/Industrial
 - Monitored tributaries (nonpoint sources)
 - Adjustment for unmonitored areas
 - Atmospheric (over-lake)
- Can be broken down by tributary with same level of detail (1994-2008 Great Lakes update, 2003-2013 Lake Erie)
- Can be reported as average daily loads by tributary (Ecofore project)

DATA SOURCES

- Point Sources (TP):
 - Permit Compliance System (PCS) and Integrated Compliance Information System (ICIS)-USEPA
 - Municipal and Industrial Strategy for Abatement (MISA)-MOEE
- Tributary Flow:
 - National Water Information System (NWIS)-USGS
 - Water Survey Canada (HYDAT)-Environment and Climate Change Canada
- Tributary Concentrations (TP, DRP, etc):
 - NCWQR-Heidelberg University
 - STORET-USEPA/NWIS-USGS, individual state agencies
 - Provincial Water Quality Monitoring Network (PWQMN)-MOEE
- •Atmospheric Flux (Rainfall and TP):
 - Environment and Climate Change Canada

DATA QUANTITY/QUALITY

Point Sources:

- •All permitted P dischargers are requested/included
- •Monthly reporting by outfall
- •The best estimated source in terms of certainty
- •CSOs, RTBs, and WWSLs could be reported differently
 - Total discharge vs daily avg flow rates with no duration

Tributary Flow:

- Daily average flows
- Good spatial coverage

Tributary Concentrations:

- Daily monitoring for 5 major tribs (NCWQR) (2 historic, 1 new)
- •Federal, state, and provincial monitoring programs
 - •Monitoring efforts decreasing over time, recent uptick
 - Poor temporal coverage, e.g., every other month, missing years
 - ■TP ≥ SRP # of samples

Atmospheric Flux:

- •Multiple stations for the Canadian lakes
- Good data when birds aren't around

CALCULATION METHODOLOGIES

Loading (mass per unit time)= Flow x P Concentration

- Point Sources: average monthly loads
- Tributaries: Beale's Stratified Ratio Estimator
- Atmospheric: average of monthly fluxes
- Unmonitored Areas: UAL adjusted for Indirect Point Sources
- Standard Error is estimated from the variances (MSE) for each load component
 - Standard error used for 95% CL

POINT SOURCES

- Municipal/Industrial dischargers NPDES or CoA permits
 - Data for these Point Sources are generally available
 - Average monthly values by pipe
- Direct Point Sources discharge:
 - Directly to the Great Lakes or their connecting channels
 - Downstream of the trib gauge/monitoring location
 - To a tributary that has been unmonitored for a particular year
- Indirect Point Sources discharge
 - To monitored tributaries
 - Upstream of the gauge/monitoring location
 - Are NOT included in the monitored trib load

NONPOINT SOURCES

- Monitored tributaries:
 - Use the daily monitored loads from NCWQR
 - All else: Beale's Stratified Ratio Estimator
 - Input daily average flows and concentration data
 - Sampled load / sampled flow x yearly flow x (bias adjustment)
 - Stratified based on flow/number of samples per stratum
- Unmonitored Areas:
 - Downstream of the trib gauge/monitoring location
 - Tributary that is unmonitored in a particular year
 - Use UAL from monitored trib and apply to unmonitored areas (downstream or adjacent watersheds)
 - Consistent with PLUARG
- Atmospheric:
 - Take average of the monthly fluxes for each station
 - Wet only, assume total = wet x 2 (wet = dry)

DISCUSSION POINTS

- Error and uncertainty
 - True load is unknown without daily sampling
 - Report statistical errors based on variance of data
 - Accuracy of estimates is dependent upon representative input data
- Adequacy of monitoring programs
 - Currently 75% of watershed area is monitored
 - Long-term trends vs load estimation
 - Capturing enough high flow events, total range of flows
 - Current programs increasing sampling efforts will improve tributary estimates
- Robust method
 - Beale's Stratified Ratio Estimator provides unbiased estimates with both systematic or event-based sampling
 - Used to estimate TP, DRP, TKN, NO2+NO3, TSS, Cl
 - Historical track record for all Great Lakes

