Below are descriptions of some of our major on-going and past projects. Click the title for more information (where available)!

Verification and Enhancement of NRCS-USDA Nutrient Tracking Tool with a Suite of Best Management Practices (BMPs)

The best way to entice producers to adopt and implement best management practices (BMPs) is for them to independently verify the effectiveness of BMPs in their own fields and on demonstration farms, in part using innovative user-friendly models (e.g., the web-based Nutrient Tracking Tool, NTT). The overall goal of this three-year project, funded by the USDA Natural Resources Conservation Service starting in October 2013, is to improve soil health and reduce nutrient and sediment exports from agricultural farms. The specific objectives are: 1) demonstrate and quantify the economic and environmental benefits of a suite of  BMPs through edge-of-field studies, 2) calibrate and verify the Agricultural Policy Environmental eXtender (APEX) model and the Soil and Water Assessment Tool (SWAT) and examine the BMP effects at different spatial scales in northwest Ohio, 3) calibrate and verify the Nutrient Tracking Tool (NTT) for the Great Lakes basin, and 4) promote and train the producers and stakeholders of NTT to estimate farm yield and nutrient loss.  Project collaborators subcontracted through Heidelberg University are the Sandusky River Watershed Coalition, Texas Institute for Applied Environmental Research (TIAER) at Tarleton State University, IPM Institute of North America, five Soil and Water Conservation Districts (SWCDs) in the Sandusky River watershed, USDA Agricultural Research Service, and local farmers/producers.  Rem Confesor is the project director.

Evaluating the 4R Nutrient Stewardship Concept and Certification Program in the Western Lake Erie Basin

Over the past two to three years, educational programs directed at growers and nutrient service providers (e.g., agricultural retailers, crop advisers) have emphasized the principles of 4R Nutrient Stewardship, which incorporate applying fertilizer using the right source at the right rate at the right time at the right place.  A 4R certification program for nutrient service providers in the Western Lake Erie Basin (WLEB) was implemented in March 2014 with 49 applications by the end of June, and three retailers had completed certification by October 2014.  The overall goal of the proposed project is to evaluate the specific impacts of the adoption of practices associated with 4R Nutrient Stewardship, and the impact of the WLEB 4R Certification Program itself, on crop productivity and profitability, water quality, and perceptions of growers, nutrient service providers, and residents in the WLEB.  A multidisciplinary approach is being used for evaluation involving monitoring, modeling, and measurement of the impacts at the field, watershed, and lake scales.  Funding for the project comes from the 4R Research Fund, which is supported in part by members of The Fertilizer Institute (TFI), the Canadian Fertilizer Institute (CFI) and multiple additional agricultural stakeholders.  The fund is currently managed by the International Plant Nutrition Institute (IPNI).  See more here:  The project is directed by Dr. Kevin King of the USDA ARS Soil Drainage Research Unit, and collaborators are  LimnoTech, Ohio State University, USDA-ARS National Soil Erosion Research Laboratory, The Nature Conservancy, Heidelberg University (Drs. Laura Johnson and Rem Confesor), and International Plant Nutrition Institute.

Long-Term Agro-Ecosystem Research Program (LTAR)
In January 2014, the NCWQR formally joined with two research laboratories operated by the USDA Agricultural Research Service (ARS): the Soil Drainage Research Unit at The Ohio State University and the National Soil Erosion Research Laboratory at Purdue University.  The three entities form the Eastern Corn Belt node of the LTAR network, one of eighteen nodes across the U.S.  The goal of LTAR is to ensure sustained crop and livestock production and ecosystem services from agro-ecosystems, and to forecast and verify the effects of environmental trends, public policies, and emerging technologies. A key expectation of the LTAR Network is the application of research results to solve critical challenges facing agriculture including: 1) a safe and plentiful food supply; 2) climate change adaptation/mitigation; 3) supplying sources of bioenergy; 4) improving water/air/soil quality; and 5) maintaining biodiversity.  Funding for collaboration among the three laboratories was still pending from USDA ARS as of December 2015.  (Drs. Confesor, Johnson, Krieger and Baker)

Forecasting Harmful Algal Blooms in Lake Erie’s Western Basin
Harmful algal blooms (HABs) were a feature of the impaired Lake Erie of the 1970s, largely disappeared in the late 1980s and 1990s, but re-appeared in the 2000s, generally getting more severe as the decade progressed.  Because of the negative economic impact of HABs on recreation, tourism, and drinking water production, and potential toxic effects in humans and animals, predicting the severity of a year’s algal bloom early in the year is very beneficial.  Currently, the NCWQR’s Maumee River data are the basis for ongoing seasonal HAB forecasts for Lake Erie produced by NOAA.  Dr. Richard Stumpf of NOAA uses a model linking March through July Maumee River discharge and phosphorus loads with the severity of HABs determined from satellite imagery and Dr. Thomas Bridgeman’s (University of Toledo) measurements of Microcystis biovolume from western Lake Erie.  In addition, our data are used in Dr. Daniel Obenour’s (NC State University) Bayesian model that forecasts HABs using a similar time frame and by LimnoTech in their Western Lake Erie Ecosystem Model (WLEEM). In 2015, NCWQR staff worked with NOAA to produce weekly early season projections to inform the public of current Maumee loading and the possible influence on bloom size.  (Drs. Baker and Johnson)

Identifying the Best Strategy to Reduce Phosphorus Loads to Lake Erie from Agricultural Watersheds

In the western Lake Erie basin, the current strategy to reduce P exports from agricultural lands is to target hotspots in the watershed (e.g. the GLRI priority watersheds) that are a major source of dissolved P runoff. Yet, increasing evidence suggests we need a basin-wide management change because most farms are leaking a moderate amount of dissolved P that differs each year depending on precipitation and crop rotation. This project will confirm which strategy is the most appropriate in identifying management practices that effectively decrease the total nutrient and sediment exports out of the watershed. In addition, our project will provide a better fundamental understanding of how differing P sources and locations may contribute to dissolved P runoff from the WLEB watersheds. Ultimately, while part of this project will be focused in smaller watersheds of the WLEB, these data will be essential to improving existing watershed models that are required to predict the effects of best management practices as well as climate change across the entire WLEB. (Dr. Confesor)

An Online Tributary Loading Tool to Support Harmful Algal Bloom Forecasting in Lake Erie

As a part of the Heidelberg Tributary Loading Program (HTLP), the National Center for Water Quality Research (NCWQR) has been collecting samples for nutrient and sediment analysis 1-3 times a day, year round for up to 41 years. Samples are currently collected from 18 tributaries throughout Ohio and Michigan, but the longest-term data have been collected from the major external inputs to Lake Erie: the Sandusky, Maumee, Cuyahoga, and Raisin rivers. Although HTLP data are posted on the NCWQR website, to expand accessibility we have partnered with the Great Lakes Observing System (GLOS) and LimnoTech to provide HTLP’s Lake Erie tributary data on GLOS for download and visualization, updated quarterly. Because the Maumee River is the largest external input to Lake Erie and current seasonal western Lake Erie harmful algal bloom (HAB) forecasts are based on spring Maumee River phosphorus loads, we developed an expedited process to provide weekly data from the Maumee River from March through August. In addition to being available for download, these data can be visualized on GLOS using a new online tool that facilitates tracking spring loads from the Maumee River and comparisons with past years as well as other Lake Erie tributaries.  (Dr. Johnson)

Phosphorus Management Scenarios: Western Basin of Lake Erie

Six groups (University of Michigan, The Ohio State University, LimnoTech, Heidelberg University, The Nature Conservancy/USDA-ARS, USGS) collaborated in a multi-modeling approach to help policy advocates identify potential solutions to elevated phosphorus loads, and consequently harmful algal blooms (HABs) in Lake Erie.  Five of the modeling groups independently set up and calibrated the Soil and Water Assessment Tool (SWAT) for the Maumee Basin.  The USGS with its calibrated SPARROW (SPAtially Referenced Regressions On Watershed attributes) model will help identify hotspots.  The calibrated SWAT models were validated and established baseline conditions using the same meteorological and point source data from 2005-2014.  Next steps include identifying and running “extreme” and “optimal” suite of BMPs  into SWAT.  (Dr. Confesor)

Agricultural Pesticides – Data Analysis and Development of Analytical Methods

Our new postdoctoral researcher, Dr. Tania Biswas, who joined our staff in January 2015, initiated two areas of investigation.  (1) Tania began to review and analyze NCWQR’s long-term data set on agricultural pesticides dating back to 1983.  She constructed numerous tables and graphs and performed statistical analyses as she began to develop a technical report on NCWQR’s analytical methods and the pesticide patterns and trends revealed by the data.  (2) Tania also began to develop expertise on NCWQR’s Bruker EVOQTM triple quadrupole mass spectrometer (LC-TQ-MS) and started to develop analytical methods for herbicides such as dicamba, 2,4,D and glyphosate, which have not previously been analyzed by the NCWQR.  Tania received hands-on training on an identical instrument at the Bruker facility in Fremont, California, in July 2015.  (Dr. Biswas)

Oligochaete Worm Species Distributions and Abundances in the Great Lakes

Differences in the co-occurrence of oligochaete worm species and their abundances relative to one another can serve as a useful indicator of the degree of environmental degradation of lakes and changes in lake quality over time.  In the deep, sometime oxygen-poor areas of many lakes, oligochaetes are the primary or only macroinvertebrates living in the bottom sediments.  For these reasons, it is important to characterize oligochaete communities.  Beginning in the fall of 2014, the NCWQR began to identify and count thousands of oligochaetes in sediment samples collected from parts of the Laurentian Great Lakes under a subcontract to the Great Lakes Center of Buffalo State College (SUNY).  The Buffalo scientists collected the samples as part of their Lake Erie and Lake Michigan Benthos: Cooperative Science and Monitoring Initiative multi-year project funded by the USEPA Great Lakes National Program Office.  (Jake Boehler)

Responses of Aquatic Biological Communities to Land-Use and Ditch Maintenance Practices in Agricultural Landscapes

As part of the Honey Creek-Sandusky River Targeted Watershed Project (see a description in the 2013-2014 annual report), this study was aimed at understanding how quickly, and to what extent, the aquatic habitats of maintained agricultural ditches become more complex and develop beneficial fish and macroinvertebrate communities in response to a variety of best management practices (BMPs).  Each summer and fall from 2008 through 2011, biologists surveyed fish and macroinvertebrates in 20 segments of maintained ditches in the Sandusky and nearby watersheds.  Fish were sampled by University of Toledo biologists (headed by Dr. Hans Gottgens), and NCWQR biologists (including student assistants) sampled invertebrates.  We submitted a final report on the macroinvertebrates in March 2014 and are presently developing a manuscript based on that work. (Jake Boehler, Drs. Krieger and Johnson)